Learning Native Continuation for
Action Chunking Flow Policies

Yufeng Liu'?, Hang Yu?*, Juntu Zhao'?, Bocheng Li%°, Di Zhang2’4, Mingzhu Li%, Wenxuan Wu?,

Yingdong Hu?, Junyuan Xie?, Junliang Guo®*, Dequan Wang'?, Yang Gao
2Spirit Al
SUniversity of Science and Technology of China

!Shanghai Jiao Tong University
“Tongji University

Abstract—Action chunking enables Vision Language Action
(VLA) models to run in real time, but naive chunked execution
often exhibits discontinuities at chunk boundaries. Real-Time
Chunking (RTC) alleviates this issue but is external to the policy,
leading to spurious multimodal switching and trajectories that
are not intrinsically smooth. We propose Legato, a training-
time continuation method for action-chunked flow-based VLA
policies. Specifically, Legato initializes denoising from a schedule-
shaped mixture of known actions and noise, exposing the model
to partial action information. Moreover, Legato reshapes the
learned flow dynamics to ensure that the denoising process
remains consistent between training and inference under per-step
guidance. Legato further uses randomized schedule condition
during training to support varying inference delays and achieve
controllable smoothness. Empirically, Legato produces smoother
trajectories and reduces spurious multimodal switching during
execution, leading to less hesitation and shorter task completion
time. Extensive real-world experiments show that Legato consis-
tently outperforms RTC across five manipulation tasks, achieving
approximately 10% improvements in both trajectory smoothness
and task completion time.

I. INTRODUCTION

Action chunking [20]] has become a widely adopted strategy
for deploying large Vision Language Action (VLA) models in
real-world robotic systems [7, |19} |37-43| 46]]. By predicting
sequences of action vectors, chunking amortizes inference cost
and enables high-frequency control. However, naive chun-
ked execution introduces a fundamental drawback: due to
inference delay and the intrinsic multimodality of flow-based
policies [24], transitions between consecutive chunks are often
not smooth, leading to visible discontinuities during execution.

Real-Time Chunking (RTC) [8] was proposed to mitigate
this issue by applying inference-time inpainting [29, |32]]
that partially constrains newly generated action chunks to
previously generated actions in their overlapping regions.
While RTC improves continuity compared to naive chunked
execution, its continuation mechanism is applied only at
inference time and is not learned as part of the policy. As
a result, the policy is prone to spurious multimodal switching
across chunk boundaries and producing trajectories that are
not intrinsically smooth. Spurious multimodal switching often
leads to hesitation and prolonged task completion time, as
shown in fig.
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Fig. 1. Legato reduces task completion time while improving trajectory

smoothness compared to RTC [§]]. Across five real-world manipulation tasks,
Legato consistently achieves shorter execution time and lower NSPARC [2]
(indicating smoother trajectories, discussed in section [[V-A2) than RTC. The
bottom plot shows an example execution trace on the pour task, as defined
in section [V-AT] where Legato produces smoother action trajectories with
fewer hesitation-induced slowdowns than RTC.

In this work, we argue that stable chunked execution re-
quires chunk continuation to be a native, learned property of
the policy. Achieving this entails two requirements: (i) per-
step guidance, where guidance is applied repeatedly across
denoising steps, and (ii) training-inference consistency. We
propose Legato, a training-time continuation mechanism for
action-chunked flow-based VLA policies. Rather than learning
the canonical flow-matching velocity field [6, 24] and relying
on inference-time correction, Legato internalizes chunk-to-
chunk continuation into the learned denoising dynamics.

To satisfy requirement per-step guidance, we first define a
guidance schedule that specifies how strongly each timestep
should adhere to the guidance actions. Unlike Training-time
RTC [9]], which enforces continuation via a hard clamp on
the prefix, Legato uses a smooth schedule: it anchors the
beginning of the chunk to known actions and gradually ramps
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Fig. 2. Overview of Legato with schedule-shaped continuation dynamics. The schedule parameters are defined as follows: s is the executed length per cycle,
d sets the fully guided prefix (inference delay), and r controls the ramp-down length of the guidance schedule over the remaining horizon. Given w, Legato
initializes actions via an action—noise mixture and learns a reshaped velocity field so that the native schedule effect is realized during multi-step denoising.

the guidance strength down to zero. During training, the known
actions are the ground-truth of the same chunk [8]. During
inference, the known actions correspond to the overlapping
prefix of the previously generated chunk. This schedule-
shaped design provides fine-grained control over the continuity
strength between adjacent chunks.

With the schedule-shaped guidance, we enforce requirement
training-inference consistency under per-step guidance. At
inference time, action generation proceeds through multiple
denoising steps, and empirically proved by section [III-B|
effective continuation requires per-step guidance before every
denoising step.

Training-time RTC [9] achieves this by hard-fixing the
executed prefix and learning to denoise only the remaining
horizon. In contrast, Legato trains the policy to generate
the entire chunk under per-step, schedule-shaped guidance
by reshaping the velocity field. This yields strict training-
inference consistency, as shown in fig. 2]

To make the above dynamics usable in real-world de-
ployments, we account for variations in inference latency
and desired continuation strength. In real-world deployment,
inference latency can vary across hardware and runtime opti-
mizations [8]]. Under a fixed guidance schedule, such variations
lead to mismatched overlap regions and require retraining
to maintain consistent behavior. At the same time, we may
want to adjust the schedule (i.e., ramp length) to control
how strongly continuation is enforced. To handle both factors,
we randomize the schedule parameters during training and
condition the policy on the resulting schedule, so the same
model can adapt to different latencies and ramp lengths.

We evaluate Legato extensively in real-world environments
to assess the necessity of learning action continuation as part of
the policy dynamics. We consider five diverse robotic manipu-
lation tasks. Across all settings, Legato consistently produces

smoother trajectories and achieves significantly shorter task
completion time by suppressing spurious multimodal switch-
ing compared to RTC, as shown in fig. [I] Additional abla-
tion studies further validate the robustness of Legato across
different guidance schedules, VLA models, and conditioning
strategies, demonstrating that its learned continuation behavior
generalizes well under varying inference conditions.

Our work offers three main contributions:

o We propose Legato, a training-time continuation frame-
work that enables per-step, schedule-shaped guidance
while maintaining strict training-inference consistency by
reshaping the flow dynamics of action-chunked policies.

¢ We introduce randomized schedule conditioning to sup-
port varying inference delays and to provide flexible
control over trajectory smoothness.

« Extensive real-robot experiments across five manipulation
tasks show that Legato consistently outperforms RTC and
training-time RTC, producing smoother trajectories and
shorter task completion time.

II. RELATED WORKS
A. VLA and Action Chunking Methods

Recent Vision Language Action (VLA) models couple large
vision—language representations with learned heads to enable
end-to-end visuomotor policies [5H7) [25] 33133 44,
[45]]. Most VLA systems generate actions in chunks, predicting
a sequence of future controls per inference step 42].
Action chunking has been successfully combined with a
variety of generative policy formulations, including diffusion-
based [3l [36, 38|, flow-based [6} [7, [10, 23],
and discrete action representations [4}, 28]]. However, chunked
execution trades off responsiveness for smoothness [8], and
inference latency further increases discontinuities between suc-
cessive chunks, motivating methods to improve continuation.



B. Trajectory Continuation in Learned Policies

Building on action chunking, a common approach to im-
prove responsiveness is asynchronous execution, where ac-
tion generation overlaps with execution [31, 43]; however,
without explicit continuation constraints, independently gen-
erated chunks can exhibit abrupt multimodal switches at their
boundaries. Bidirectional decoding (BID) [26] uses rejection
sampling to keep continuity across chunks. Real-time chunk-
ing (RTC) [8] addresses continuation under asynchronous
inference by conditioning new action chunks on previously
issued actions that are guaranteed to execute. While RTC
effectively mitigates boundary artifacts caused by inference
latency, it is an inference-time mechanisms, leaving open
the question of how to induce robust trajectory continuation
without additional test-time intervention.

C. Conditioning in Diffusion- and Flow-Based Policies

Recent diffusion- [[16] and flow-based [24] policies explore
conditioning mechanisms to improve temporal coherence and
execution efficiency. Diffusion Forcing [12]] and Fast Policy
Synthesis with Variable Noise Diffusion Models [17] adopt
a timestep-level diffusion formulation, generating a single
action per inference step and improving reactivity through
noise modulation, but without explicitly modeling continuation
across action chunks. Rolling Diffusion Policy [18] similarly
operates at the timestep level, incrementally refining future
actions via rolling denoising to enhance temporal awareness.
In contrast, SAIL [1] performs chunk-level conditioning by
leveraging overlapping actions between consecutive chunks
using classifier-free guidance [[15], which mitigates discontinu-
ities under fast execution but provides only soft alignment and
limited control over continuation strength. Concurrent with our
work, training-time RTC [9]] introduces continuation during
training by conditioning on a hard action prefix that simulates
inference delay. While this exposes the policy to prefix-based
continuation, the conditioning remains an external constraint
and does not account for the effective denoising dynamics
induced by repeated, schedule-shaped guidance at inference
time, leaving continuation outside the learned policy dynamics.

[II. METHODOLOGY

A. Preliminaries

We consider Vision Language Action (VLA) policies that
generate action sequences in fixed-length chunks using flow-
based generative models. Let A € R*Pa denote a ground-
truth action chunk of horizon H, where D, is the action
dimension, and let € ~ A/(0,I) denote Gaussian noise of the
same shape. Flow matching (FM) [24] constructs a continuous-
time interpolation between noise and action, and trains a neural
velocity field to transport samples along this path.

1) Flow matching: Given a time variable ¢ € [0,1],
standard flow matching defines the interpolation

X, =(1—t)e+tA, (1

and supervises the model to predict the corresponding velocity
field
U™ (X, 1) = A — e )

At inference time, action generation begins from an initial
noise sample e and progressively transforms it into an action
chunk by integrating the learned velocity field from ¢ = 0 to
t=1

2) Real-Time Chunking: Real-Time Chunking (RTC) [8]
enforces continuity between successive action chunks through
a test-time guidance mechanism inspired by inpainting, which
encourages partial agreement with previously generated ac-
tions.

Beyond continuity, RTC also introduces an asynchronous
execution scheme that overlaps inference and action execution
to mitigate model latency. For an action chunk of horizon H,
the first d timesteps correspond to inference latency, during
which the robot continues executing the previous chunk. The
next s timesteps correspond to the portion of the current chunk
that will be executed before the next inference completes.
Once (s — d) timesteps of this portion have been executed,
inference for the next chunk is triggered while execution
continues, enabling overlapped computation and control.

RTC further employs a structured guidance schedule over
the chunk horizon. The initial d timesteps receive full guidance
to strictly enforce continuity with past actions, followed by a
ramp-down phase. Let r denote the length of this ramp; the
schedule commonly satisfies

r+s+d=H. 3)

This design enforces strong adherence to previously executed
actions near the chunk boundary while gradually relaxing
constraints toward the end of the horizon.

Our method draws inspiration from RTC in both its use
of previously executed actions and its structured guidance
scheduling, as shown in fig.

B. Why per-step guidance matters?

We aim to learn a policy that remains strictly consistent
between training and inference. To satisfy this requirement,
guidance must be incorporated during training. Under the
standard FM formulation, training optimizes the velocity field
that transports samples from an initial noise to the ground-
truth action. The only inference strategy that remains strictly
consistent with training is to apply guidance only once at
initialization and then perform multi-step denoising.

To verify whether the one-shot guidance is enough for
continuous guidance, we trained a flow policy where the
standard noise initialization was replaced with a prefix-guided
variant €’. Let m € {0, 1} denote a horizon-wise mask for
the overlap region, and let A ,.s be the ground-truth reference
actions on this overlap. We construct the guided noise:

€=(1-moe+mao Ay, e~N(0OI), @

where © denotes element-wise multiplication. Training fol-



LeftArm X LeftArm Y LeftArm Z

36
—24 -
30 >~
0 2 4 6

|
=
=)

24 -—GT =0.4

L -32

’K 40

0 2 4 6
Timestep

-8 ==t=0.2
18 =r=0.6 ==1=0.0

Value (mm)
|
3

|
=

0 2 4 6

Timestep Timestep

Fig. 3. One-shot prefix guidance cannot preserve prefix constraints during
denoising. Trajectories show three dimensions of the overlap (prefix) actions
across denoising steps; colors indicate diffusion times ¢ (from 1 to 0), and GT
denotes the ground-truth prefix. Although clamped at initialization, the overlap
actions drift from the reference as denoising proceeds, motivating the need for
per-step guidance. Evaluated on the pour task, as defined in section [[V-AT]

lows standard flow matching, but with € as the start point:
X;=(1-t)e +tA, u'™MX,t)=A—-€. (5

During inference, we apply the same prefix clamp only at
initialization, Xo = €', and then perform standard multi-step
denoising without any intermediate guidance.

However, empirical results reveal that one-shot guidance is
insufficient for continuous guidance. As the denoising process
iterates, the overlap region in the generated chunk progres-
sively deviates from the reference actions as shown in fig.
(details are shown in the appendix). The prefix part moves
away from the desired constraint without repeated guidance.

This study leads to a crucial conclusion: effective continu-
ation requires per-step guidance. However, simply applying
per-step guidance on the standard FM remains inconsistent
with the training objective. This dilemma motivates Legato:
we reshape the flow dynamics during training so that the
model can support per-step, schedule-shaped guidance while
remaining fully consistent with the training objective.

C. Native Continuation for Action Chunk Generation

We aim to make action continuation a native property of
the learned policy. This entails two requirements: (i) per-step
guidance as discussed in section where guidance is
applied repeatedly across denoising steps, and (ii) training-
inference consistency.

Accordingly, we first construct a schedule-shaped training
path, then derive the induced guided dynamics, and finally
reshape the velocity field to eliminate the train-test mismatch.

1) Action-noise mixture: To incorporate guidance into
training, we introduce a horizon-wise continuation vector
w € [0,1]H, which encodes the guidance schedule over the
chunk horizon, i.e., full guidance near the chunk beginning
and a gradual ramp-down toward the end of the horizon.

Using w, we define an action-noise mixture

et=(1—-w)Oet+twdA, (6)

where ® denotes element-wise multiplication and e.g repre-
sents the effective noise initialization induced by continuation
guidance, interpolating between the action chunk and pure
noise in a horizon-wise manner.

Algorithm 1 Legato: Training and Inference

Require: policy fy; observation o; horizon H; denoising steps
N; schedule params (d, r); executed length s

1: Construct schedule w € [0,1]* from (d,7)
2: At + 1/N, K+ w/At
3: if training then
4 Sample t ~U(0,1), e ~ N(0,I)
5: €t wWOA+(1-—w)Oe
6: Yt — (1 — t)eeff + tA
7: Varget ¢ (1 =K O (1 —1)) © (A —¢€)
8: Update 6 by || fo(Y¢,0,t,w) — Viarget |2
9: else > Inference
10:  Sample € ~ N(0,I)
11: if no previous chunk then
12: Apev 0
13: end if
14: A et < PADLAST(Aprev[s:H])
> Truncate and pad with the last value to length H
15: Xp < €
16: for k=0to N —1 do
17: Y (1-w)0Xp+wO Aper > Guiding
18: X1+ Y+ At fo(Yg,0,tg,w) > Denoising
19: end for
20: return A Xy
21: end if

Based on this mixture, we construct the interpolation path
Y, = (1—t) et + LA, (7)

which reduces to the standard flow-matching path when w = 0
and collapses to the action chunk for all ¢ when w = 1.
The corresponding flow-matching velocity is

Ut™MYt)=A-—ex=1-w)o(A—¢€), ©®

reflecting a horizon-wise modulation of the FM velocity.

Multimodal persistence and smoothness: Eq. reveals
a schedule-shaped velocity: the target transport magnitude is
modulated by w. In timesteps with large w; (strong continua-
tion), the effective ul™ is suppressed as ui™ oc (1 — w;),
making the overlap and the ramp region intrinsically less
mutable than the none-guidance region during denoising.
This discourages frequent switching among competing action
modes in highly multimodal tasks.

Moreover, since w decreases from 1 along the horizon,
the effect of continuation is gradually relaxed through a
ramp, yielding a smooth transition from strict guidance to
free generation. As a result, Legato reduces chunk-boundary
discontinuities and improves trajectory smoothness.

2) Effective dynamics of repeated continuation guidance:
The velocity construction above specifies the schedule-shaped
guidance. At inference time, continuation requires per-step
guidance to keep effective. We therefore derive the exact
dynamics induced by the per-step guidance.

At each denoising step k, the current noisy action is first



guided toward the reference action according to the guidance
schedule w:

Y, =(1-woXi+wo A, 9)

where A denotes the reference action and X, is the current
noisy action before guidance.
We then perform one denoising update:

Xit1 =Y+ At fo(Yi, tr), (10)

after which the same guidance in eq. (9) is applied again at
the next step, as shown in fig.
Eliminating X, yields the exact recurrence

Yit1 = wOA+(1-w)OYp+(1-w)OAL fo(Yi, t). (11)

Taking the continuous-time limit, this recurrence corresponds
to the ordinary differential equation

Yt)=1-w) o fo(Y(),t) -k (Y(t)—A), k=w/At.

(12)
Importantly, eq. is not an approximation: it is the exact
continuous-time system whose Euler discretization reproduces
repeated continuation guidance.

3) Training-inference consistency: Having characterized
the dynamics induced by per-step guidance, we now turn to the
second requirement: training-inference consistency. Standard
flow matching supervises the velocity field u™, whereas
inference with repeated continuation guidance follows the
dynamics in eq. (I2). To eliminate this mismatch, we require
the executed velocity field to coincide with the flow-matching
target:

1-w)o fo(Y, 1) — 0 (Y — A) =u™(Y,1). (13)

Solving eq. (I3) for fy yields the Legato velocity field
fo(Y.)=1-w) o ™Y, t)+ko (Y -A)], 14

where the inverse is taken element-wise.
Substituting eq. (7) and eq. () into eq. (T4), we obtain a
closed-form target velocity

Viarget (£, A, €, w) = (1 —kO(1- t)) ©A=-¢€), (15

The network is trained by regressing fo(Y¢,0,t, w) t0 Viarger.
Thus, Legato preserves the geometric direction of standard
flow matching while reshaping the velocity magnitude to
internalize continuation dynamics.

Inference: At inference time, we use the previously gen-
erated (but haven’t been executed) chunk as the reference
for continuation. We construct a reference action chunk A ¢
from the previous prediction using the alignment procedure as
shown in algorithm [T} We then instantiate the guidance term
in eq. (I2) by setting A A,

Given a schedule w, we initialize
YO:w@AYef“’(l*w)@e?GNN(OaI)v (16)

We integrate eq. (I2) forward in time from ¢t = 0 to ¢ = 1
using the learned velocity field in eq. (T4), with the same

Fig. 4.
manipulation tasks (stack bowls, pour things, pick and place, fold towel and
open drawer) covering diverse motion patterns and multimodal choices such
as alternative grasp goals and left/right arm selection.

Real-world evaluation tasks on a dual-arm robot. We consider five

discretization (number of denoising steps N) as used during
training. This enable the strict training-inference alignment.

D. Schedule Randomization and Conditioning

In our framework, the continuation schedule over an action
chunk of horizon H is fully specified by two scalar parameters:
the inference delay d and the ramp length r. Given (d,r),
the guidance schedule w € [0,1]¥ is uniquely determined,
consisting of a full-guidance prefix of length d followed by a
ramp part of length 7.

In real-world deployment, effective inference delay varies
across hardware platforms, model sizes, and inference op-
timizations. To account for this variability while enabling
flexible control over continuation smoothness, we randomize
(d,r) during training, thereby exposing the policy to a diverse
family of guidance schedules.

When training with randomized schedules, the policy must
be informed of the schedule at inference time. We there-
fore explicitly condition the action decoder on the sched-
ule. Concretely, if the noisy action Y, € R¥*Pa«  where
D, denotes the action dimension, we append the guidance
schedule along the feature dimension, resulting in an noisy
action of shape (H, D, + 1). At inference time, adapting to a
new continuation regime only requires changing the guidance
schedule w, without retraining the model. Empirically, this
schedule conditioning substantially improves robustness across
hardware platforms and inference budgets.

IV. EXPERIMENTS
A. Experimental Setups

1) Tasks and Environments: We evaluate our method on
five real-world manipulation tasks: (i) stack the bowls, (ii) pour
things into the bowl, (iii) put all the items into the box, (iv) fold
the towel, and (v) open the drawer, as shown in fig. El These
tasks jointly test different action patterns (e.g., rotation- or
translation-dominant motions) and multimodal action selection
(e.g., multiple valid grasp goals or the choice of different arms
for execution). All tasks are evaluated with a fixed time cutoff
of 120s. Details are provided in the appendix.



TABLE I
MAIN REAL-WORLD RESULTS COMPARING RTC AND LEGATO ACROSS FIVE TASKS. WE REPORT TASK SCORE (1), COMPLETION TIME IN SECONDS ({),
AND SMOOTHNESS METRICS (J.): NLDLJ (NEGATIVE LOG DIMENSIONLESS JERK [} [2]]), NSPARC (NEGATIVE LINEAR AND ANGULAR SPECTRAL
ARC LENGTH [[1}[2]]), AND OVERLAP RMSE (ROOT MEAN SQUARED ERROR, ><103). VALUES ARE REPORTED AS MEAN £ STANDARD ERROR.

Smoothness |

| Score 1 | Completion Time (s) | | 3
Task | | | NLDLJ | NSPARC | Overlap RMSE (x10%) |

| RTC Legato | RTC Legato | RTC Legato | RTC Legato | RTC Legato
Bowls 8.68 £ 035 9.08 £ 033 | 52.88 £ 354 42.66 £ 268 | 36.00 &= 034 35.86 £ 038 | 1.82 £ 004 1.63 £ 002 | 6.83 £ 050 4.58 £ o7
Pour 934 £+ 015 9.72 4 013 | 95.07 + 286 75.73 & 151 | 39.82 + 015 39.50 4 013 | 2.85 £ 024 1.65 £ 008 | 7.64 £ 070 5.14 £ o017
PickPlace | 9.47 £ o015 9.53 &+ o012 | 35.53 &+ 124 30.37 &+ 065 | 34.42 + 015 34.34 + o014 | 2.10 £ 00s 1.89 &£ 005 | 10.17 + 066 5.98 =+ 0.40
Drawer 9.20 £ 016 9.50 & 013 | 25.97 & 074 21.80 & 072 | 32.73 £ 013 28.55 £ 026 | 2.24 £ 005 1.99 =+ o00s | 12.11 £ 066 11.74 + 055
Towel 7.33 £ 062 8.17 & 056 | 25.93 £ 098 20.00 & o078 | 32.79 + 020 32.43 4 024 | 2.17 £ 007 1.97 £ 005 | 11.28 + 055 6.22 + o066

Fig. 5. Legato suppresses spurious multimodal switching across chunk boundaries. In a representative bowl-stacking rollout, RTC alternates (arrow) between
competing grasp goals (green circle) and execution arms (red circle) over successive chunks, producing visibly hesitant corrections. Legato preserves a

consistent grasp goal and arm choice (blue circle), leading to steadier progress.

2) Evaluation Metrics: The following evaluation metrics
are used to assess real-world experimental performance.

Task completion score. Each rollout is assigned a task-
specific completion score based on task progress and failure
cases (e.g., partial success, object drops, or incorrect actions).
Higher scores indicate better task completion.

Task completion time. We measure the total time required
to complete each task. This metric reflects the execution
efficiency of the policy, capturing delays caused by hesitation
or spurious action switching during real-world execution.

Trajectory smoothness metrics. Following prior work on
action smoothness, we evaluate smoothness on the model out-
put commands rather than robot executed states. This decou-
ples model behavior from low-level controller performance.
Specifically, we report three smoothness-related metrics that
capture complementary aspects of trajectory quality [1l 2]):

o Negative SPARC (NSPARC), where SPARC [Il 2]
(Linear and Angular Spectral Arc Length) measures the
smoothness of the velocity profile in the frequency do-
main over the entire trajectory. Lower values of NSPARC
indicate smoother global speed modulation with reduced
high-frequency fluctuations.

o Negative LDLJ (NLDLJ), where LDLJ (Log
Dimensionless Jerk) quantifies high-order geometric
smoothness by integrating squared jerk over the entire
trajectory. Lower NLDLJ correspond to reduced overall
jerk energy and smoother motion at a global level.

¢ Chunk-overlap RMSE, computed over the overlapping
delay segment between consecutive action chunks, which
evaluates local trajectory continuity at chunk connections
rather than global smoothness.

Except for the task completion score, lower values indicate
better performance for all metrics. Details of all metrics are
provided in the appendix.

3) Models and Training Protocol: We compare the RTC
baseline and our proposed Legato method under a strictly
controlled setting. Both methods are initialized from the same
mo.5 pretrained checkpoint, trained on identical task datasets,
and optimized using the same training hyperparameters and
number of training steps.

B. Main Results

In this section, we report real-world evaluation results of
Legato and RTC across five manipulation tasks executed on
physical robotic platforms. As summarized in table [, Legato
consistently outperforms RTC across all evaluated tasks.

1) Task efficiency: Legato consistently achieves shorter
task completion time than RTC across all tasks. As analyzed
in section [[lI-C] the schedule-shaped velocity reweighting
increases the difficulty of switching between competing action
modes, effectively suppressing frequent multimodal oscilla-
tions during execution.

Empirically, this leads to more decisive action generation
with reduced hesitation before execution, thereby shortening



TABLE II
COMPARISON OF TRAINING-TIME RTC AND LEGATO. THE GUIDANCE
CONFIGURATION OF LEGATO 1S d=8, s=30, r=22. VALUES ARE
REPORTED AS MEAN & STANDARD ERROR.

Metric | Training-time RTC Legato

Score T 9.46 + 0.16 9.72 £ 0.3
Completion Time (s) | 81.73 £ 1.12 75.73 + 1.51
NSPARC | 2.46 + 0.14 1.65 + 0.08
NLDLJ | 39.95 4+ 0.13 39.50 + 0.3

overall task duration. The effect is particularly pronounced
in the bowl-stacking task, where multiple visually similar
bowls induce a large number of plausible action modes, as
shown in fig. [5] In such settings, RTC often alternates between
competing strategies, while Legato maintains consistent mode
selection and completes the task more efficiently.

2) Trajectory smoothness: Legato also demonstrates clear
advantages in trajectory smoothness compared to RTC. With
the exception of NLDLJ, all smoothness-related metrics show
statistically significant improvements in favor of Legato.

Specifically, Legato consistently achieves lower NSPARC
values across all tasks. This result indicates that Legato pro-
duces commands with reduced high-frequency velocity fluctu-
ations and more regular speed modulation. Such improvements
correspond to smoother and more visually coherent motions
observed during real-world execution, as shown in the trajec-
tories in fig. [I]

In addition, Legato substantially reduces the chunk-overlap
RMSE across tasks. The observed improvements indicate that
Legato generates more coherent chunk-to-chunk transitions,
leading to improved continuity at action boundaries and
smoother chunk-to-chunk stitching.

In contrast, improvements in NLDLJ do not consistently
reach statistical significance across all tasks. NLDLJ measures
high-order geometric smoothness by integrating squared jerk
over the entire trajectory and is therefore dominated by mo-
tion segments outside the chunk overlap regions. Importantly,
NLDLJ does not degrade under Legato compared to RTC,
indicating that while trajectory continuity is improved at chunk
boundaries, the remaining portions of the trajectory do not
exhibit degraded smoothness.

3) Task success: Finally, Legato exceeds the task com-
pletion scores achieved by RTC. This confirms that the ob-
served improvements in execution efficiency and trajectory
smoothness do not come at the cost of task success, but
instead translate into more reliable and effective real-world
manipulation performance.

C. Comparison with Training-Time RTC

We compare Legato with the recently proposed training-
time RTC [9] on the pour task, which also introduces con-
tinuation during training by constraining overlapping action
segments. We implement training-time RTC following the
original formulation and compare it against Legato under the
same experimental settings. As shown in table [, Legato
achieves higher task scores, shorter completion times, and
improved smoothness metrics compared to training-time RTC.
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Fig. 6.  Schedule ablation reveals a controllable trade-off between local

overlap consistency and smoothness. Across schedule configurations (d, s, ),
Legato outperforms RTC on completion time and smoothness. Decreasing
stride strengthens overlap coupling but can increase high-frequency content;
shortening the ramp partially recovers frequency-domain smoothness at the
cost of weaker overlap alignment.

To contextualize this comparison, when the ramp length in
our guidance schedule is set to zero, the schedule reduces to
a hard overlap constraint that is similar in form to training-
time RTC. However, this similarity is limited to the constraint
shape: the two approaches differ fundamentally in how con-
tinuation is incorporated into the learned policy. Training-time
RTC treats continuation as an external constraint via hard
prefix conditioning while leaving the underlying flow dynam-
ics unchanged. In contrast, Legato reshapes the learned flow
dynamics to match the effective denoising behavior induced by
repeated, schedule-shaped guidance, so continuation becomes
a native property of the policy dynamics.

Overall, these results suggest that reshaping the policy dy-
namics (rather than enforcing hard overlap constraints alone)
is important for effective chunk continuation, and that using
a non-zero ramp further enables smoother transitions between
consecutive action chunks.

D. Ablation Studies

In this section, we conduct a comprehensive set of ablation
studies to analyze the applicability and robustness of the
proposed method. Specifically, we examine: (i) the effect of
different guidance schedule settings at inference time, (ii) the
role of the condition row used in our policy, and (iii) the
performance of Legato across different VLA models.

1) Varying the execution stride s: RTC recommends set-
ting the execution stride s to at least half of the action chunk
length. However, since s directly determines the effective
inference frequency, a larger stride inevitably reduces the
model’s responsiveness. This reveals an inherent trade-off
between inference efficiency and control reactivity, motivating
a detailed ablation over guidance schedule configurations.

When the execution stride s becomes smaller than half of
the chunk length, the ramp segment may extend beyond the
immediate next chunk. To avoid that, we shorten the ramp



TABLE III
ABLATION STUDY ON ROBUSTNESS TO INFERENCE DELAY. WE VARY THE
INFERENCE DELAY d WITH A FIXED EXECUTION STRIDE s, WHERE THE
RAMP LENGTH 7 CHANGES ACCORDINGLY DUE TO THE SCHEDULE
CONSTRAINT. VALUES ARE REPORTED AS MEAN + STANDARD ERROR.

TABLE IV
ABLATION STUDY ON THE EFFECT OF THE CONDITION ROW UNDER
DIFFERENT GUIDANCE CONFIGURATIONS. WE VARY THE INFERENCE
DELAY d AND RAMP LENGTH 7 TO CONSTRUCT DIFFERENT SCHEDULES.
VALUES ARE REPORTED AS MEAN + STANDARD ERROR.
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segment as s decreases, ensuring that the ramp always remains

confined within the next chunk. We evaluate several guidance

schedule configurations on the pour task, as illustrated in fig.[6}
Our findings can be summarized as follows:

a) Legato consistently outperforms RTC on almost all
metrics: The only exception is the overlap RMSE in the d =
s = r = 8 setting, which is discussed in the appendix.

b) Reducing the execution stride s improves chunk-
to-chunk consistency but can degrade global smoothness:
Under the constraint r+s+d = H, a smaller s implies a larger
ramp length r, which improves chunk-to-chunk continuity, as
reflected by lower overlap RMSE. At the same time, smaller
strides lead to more frequent overlap regions, causing high-
frequency components to accumulate and resulting in degraded
whole-trajectory smoothness metrics.

c) Shortening the ramp while keeping s small improves
frequency-domain smoothness at the expense of overlap
consistency: When s remains small but the ramp length is
shortened, NSPARC improves, indicating smoother frequency-
domain behavior. However, this reduces overlap consistency,
reflecting a weaker coupling between adjacent chunks.

Overall, these results demonstrate that the execution stride
s and ramp length jointly control a fundamental trade-off
between local chunk connection quality and global frequency-
domain smoothness. By adjusting their relative proportions,
Legato enables flexible control over trajectory smoothness.

2) Varying the inference delay d: In addition to the
execution stride, the inference delay d also plays an important
role in shaping trajectory smoothness. To isolate its effect,
we fix the execution stride s and vary the delay length d,
conducting evaluations on the pour task. The quantitative
results are summarized in table

Across all evaluated metrics, Legato consistently outper-
forms RTC, demonstrating the robustness of the proposed
method to variations in inference latency. When analyzing
Legato specifically, we find that reducing the delay length
decreases the size of the overlap region while simultaneously
increasing the relative length of the ramp segment. This leads
to improved chunk-to-chunk continuity and smoother execu-
tion, as reflected by better overlap consistency and frequency-
domain smoothness metrics.

Overall, these results indicate that both execution stride s
and inference delay d provide effective control knobs for shap-

ABLATION RESULTS ON THE 719 MODEL COMPARING RTC AND LEGATO
UNDER THE SAME GUIDANCE CONFIGURATION (d=8, s=30, r=22).
VALUES ARE REPORTED AS MEAN £ STANDARD ERROR.

Metric | 7o+ RTC mo + Legato
Completion Time | 92.93 4+ 1.90 88.30 + 1.29
NSPARC | 2.00 =+ 0.09 1.83 + 0.08
NLDLJ | 40.48 + 0.21 40.27 + 0.09
Overlap RMSE | 8.63 £ 0.65 7.50 £ 049

ing smoothness properties of generated trajectories. Legato
can flexibly adapt to different schedule configurations while
consistently maintaining superior performance over RTC.

3) Condition Row: To evaluate whether the condition row
is useful, we conduct an ablation study in which the guidance
schedule is no longer provided as an explicit condition.

We perform this ablation on the pour task, and report
the results in table As shown, removing the condition
row leads to a degradation in performance, particularly in
trajectory smoothness and execution stability. This suggests
that explicitly providing the guidance schedule helps the
model disambiguate different continuation regimes induced by
varying (d,r) pairs, and enables more reliable adaptation to
dynamic inference conditions.

4) Different Models: In the main results table [[} we eval-
uate our method on the 7y 5 model. To evaluate whether the
proposed method generalizes across different VLA models, we
further conduct experiments on the my model. We select the
representative task pour things. As shown in table |V| Legato
consistently outperforms RTC on the 7y model on the task.

These results demonstrate that the proposed method is not
tied to a specific policy backbone or training configuration,
and can be effectively transferred across different flow-based
VLA models, highlighting its robustness and model generality.

V. CONCLUSION

In this work, we propose Legato, a training-time contin-
uation method for action-chunked flow-based VLA policies.
Legato reshapes the learned flow dynamics to align training
and inference under schedule-shaped, per-step continuation,
making chunk continuation a native property of the pol-
icy. This design improves trajectory smoothness and reduces
spurious multimodal switching at chunk boundaries, leading
to smoother action and more consistent action modes, less



hesitation, and shorter task completion time. By conditioning
on randomized schedules, a single policy can adapt to different
inference delays and flexibly control trajectory smoothness.
In the current formulation, the denoise step is specified at
training time, limiting the ability to adjust it during inference.
Future work could investigate more flexible native continua-
tion schemes with consistent training and inference dynamics.
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APPENDIX
A. Task Details

We evaluate all methods on five real-world manipulation
tasks that span diverse object interactions, action patterns, and
execution characteristics. Across all tasks, the robot starts from
an identical initial configuration for all models. Unless other-
wise specified, object positions, orientations, and appearances
are randomized per trial but kept identical across different
models to ensure fair comparison. Unless otherwise noted, for
all tasks except bowl, each model is evaluated over 30 trials.
All ablation studies follow the same evaluation protocol, with
30 trials conducted per model for each task.

1) Bowl Stacking (bowl): The objective of this task is to
stack all bowls placed on a tabletop into a single vertical stack.
We consider five settings with the number of bowls equal
to {3,4,5,6,7}. For each setting, 10 trials are conducted,
resulting in a total of 50 trials. In each trial, the initial positions
and colors of the bowls are randomly sampled. To ensure fair
comparison, the same set of 50 initial configurations is used
across all models. A trial is considered successful if all bowls
are stacked into one pile without any bowl falling off the table.

2) Pouring (pour): This task evaluates coordinated grasp-
ing, lifting, and rotational control. Two bowls of different
colors are placed on the tabletop, one of which initially
contains a set of small blocks. The robot is required to grasp
the bowl containing the blocks, pour all blocks into the empty
bowl, then grasp the second bowl and pour the blocks back
into the original bowl. This sequence constitutes one complete
pouring operation, as illustrated in fig. 1. Each trial consists
of three consecutive pouring operations.

3) Pick-and-Place (pickplace): In this task, the robot must
place all items on the table into a white box. The objects
include a small jar, a marker pen, and a small ball. The white
box and all three objects are randomly placed on the tabletop
at the beginning of each trial, with configurations shared across
models. A trial is considered successful if all three objects are
fully placed inside the box.

4) Drawer Opening (drawer): This task requires the robot
to open the second drawer of a white three-layer drawer
cabinet. At the beginning of each trial, the drawer cabinet is
placed on the table with a randomly sampled position and
orientation, while remaining consistent across models. The
task is considered successful if the second drawer is pulled
open beyond a predefined distance threshold.

5) Towel Folding (towel): The objective of this task is to
fold a towel placed on the tabletop. The towel’s initial position
and orientation are randomly sampled for each trial and kept
identical across models. A trial is considered successful if
the towel is folded into a compact configuration according
to predefined geometric criteria.

B. Delay Construction Details

In our experiments, the guidance schedule is fully deter-
mined by two parameters: the inference delay d and the
ramp length r. Once these two parameters are specified, the

corresponding guidance schedule is uniquely defined. This
section details how the delay parameter d is constructed and
controlled in our experiments.

All experiments are conducted using the 7y 5 model on
a single RTX 4090 GPU. Without enabling inference-time
optimizations, a single forward pass of the model takes ap-
proximately 170ms. We adopt an action chunk size of 60,
where each chunk corresponds to 2 seconds of continuous
actions. Under this setting, the minimum delay induced by
inference latency corresponds to approximately 6 timesteps.

Through careful empirical measurements, we observe that
when running on the same hardware, the inference delay
remains stable across executions and does not exhibit large
fluctuations, typically staying within a one-timestep variation.
To ensure experimental consistency and precise control over
the delay parameter, we explicitly construct the effective delay
duration. Specifically, after generating an action chunk, if the
actual inference time does not occupy the prescribed number
of delay timesteps, we introduce additional idle time to ensure
that the total delay equals the target value. Owing to the
stability of inference latency on the same hardware, the actual
delay does not exceed the prescribed value in practice, and
we further allow a small tolerance margin to guarantee this
condition.

In the main experiments, we fix the delay to d = 8
timesteps. This corresponds to an effective delay of approx-
imately 266.7 ms. For the delay ablation study, we evaluate
three different delay settings with d € {6,8,10} timesteps,
corresponding to delays of approximately 200 ms, 266.7 ms,
and 333.3 ms, respectively.

We emphasize that this explicit construction of delay is
introduced solely to control experimental variables and ensure
fair comparison across different settings. Our experiments
show that the proposed method maintains strong performance
across a range of delay values. In practical real-world deploy-
ments, the delay does not need to be fixed and can instead be
handled using a delay buffer, similar to the strategy adopted in
Real-Time Chunking (RTC), allowing the guidance schedule
to adapt dynamically to runtime conditions.

C. Experiments Details

We clarify the experimental protocol for the pour task. The
main experiments and the ablation studies were conducted
with a time gap of approximately one month. To ensure that
potential changes in the environment or updates to the robot
system did not affect the reported results, experiments with
identical settings to the main experiments were re-run during
the ablation phase to enable fully fair comparisons.

Specifically, the main experiments reported in table 1 and
table 2, together with the preliminary study shown in table[A.2]
were conducted in the same experimental batch. The remaining
ablation experiments were performed at a later time. By re-
evaluating overlapping settings, we ensure that all reported
comparisons reflect methodological differences rather than
changes in the experimental setup.



TABLE A.l
TASK COMPLETION SCORING SCHEMES FOR ALL FIVE TASKS. POSITIVE
SCORES ARE AWARDED FOR COMPLETING TASK-RELEVANT STEPS, WHILE
PENALTIES ARE APPLIED FOR EXECUTION ERRORS. EACH PENALTY ITEM
IS CAPPED AT A MAXIMUM DEDUCTION OF 3 POINTS PER TRIAL.

Task Scoring Item Score
Successfully stack one bowl +2
Bowl Bowl tipping or falling -1
Empty grasp -1
Grasping an already stacked bowl -1
Complete one pouring operation +(10/3)
Pour Bowl tipping or falling -1
Empty grasp —1
Blocks spilled outside the bowl -1
All three objects placed into the box +10
PickPlace Object dropped -1
Empty grasp -1
Object not placed into the container —1
Successfully open the drawer +10
Pushing the drawer cabinet -1
Drawer
Empty grasp —1
Incorrect pulling direction -1
Towel Complete the first fold +5
Complete the second fold +5

D. Metric Details

1) Task Completion Score: Trajectory smoothness is only
one of several factors that influence a model’s final task per-
formance. Whether a task can be successfully completed also
depends on factors such as the generalization of the training
data, the consistency between the deployment environment and
the data collection setup, and the overall quality of model
training. As a result, using a single binary success rate is
insufficient to fully characterize model performance, especially
for long-horizon manipulation tasks.

In long-horizon settings, early execution errors can propa-
gate and significantly affect subsequent actions. Under such
conditions, a binary success metric fails to reflect partial
progress or distinguish between qualitatively different failure
modes. To more accurately measure task performance, we in-
troduce a task completion score that provides graded feedback
based on the extent to which task objectives are achieved.

For each task, we define a structured scoring scheme in
which completing meaningful intermediate steps yields posi-
tive scores, while execution errors incur penalties. The scoring
design follows two principles. First, executions that complete
more task-relevant steps receive higher scores than those
completing fewer steps. Second, trajectories that complete the
task with recoverable errors receive higher scores than those
that fail to complete the task, but lower scores than trajectories
that complete the task without errors.

We design task-specific completion criteria and penalty rules
for all five tasks to ensure that the resulting scores consistently

reflect execution quality and task progress, rather than relying
solely on a binary notion of success or failure, as shown in
table [AJ1
2) Smoothness Metrics: We evaluate trajectory smooth-
ness using three complementary metrics that capture different
aspects of execution quality: NSPARC, NLDLJ, and overlap
RMSE. All metrics are reported such that smaller values indi-
cate smoother trajectories. For clarity, NSPARC and NLDLJ
are defined as the negations of SPARC and LDLJ, respectively.
a) NSPARC (Negative SPARC): SPARC (Spectral Arc
Length) measures smoothness in the frequency domain by
quantifying the arc length of the normalized velocity mag-
nitude spectrum. Given a scalar velocity signal v(t) sampled
at interval At, we first compute its discrete Fourier transform
and obtain the magnitude spectrum |V (w)|. The spectrum is
normalized by its DC component,

’ [V (w)]
Viw) = .

[V(0)]
An adaptive cutoff frequency w, is selected as the smallest
frequency at which V'(w) falls below a predefined threshold,

bounded by a maximum cutoff. The frequency axis is normal-
ized as

(A1)

.w
w=—,
We

(A2)

and the spectral arc length is computed as

. 2
e | fdo\? [dV(w)

We report the negated quantity
NSPARC £ —SPARC,

(A4)

such that smaller NSPARC values correspond to smoother
trajectories.

For multi-dimensional end-effector trajectories, SPARC is
computed separately for translational and rotational motion.
Translational NSPARC is computed using the Euclidean norm
of the 3D linear velocity, while rotational NSPARC is com-
puted using the magnitude of the angular velocity after un-
wrapping the rotation representation. The final NSPARC score
is obtained by averaging over all end-effectors and motion
types.

NSPARC primarily captures the distribution of motion en-
ergy across frequencies. Trajectories with oscillations, hes-
itation, or frequent corrective motions introduce higher-
frequency components and yield larger NSPARC values,
whereas smooth, continuous motions concentrate energy in
low frequencies and result in smaller NSPARC values.

b) NLDL]J (Negative LDLJ): LDLJ (Log Dimensionless
Jerk) is a time-domain smoothness metric that penalizes rapid
changes in acceleration. Given a trajectory of duration 7" with
scalar velocity v(t) and scalar jerk j(¢), LDLJ is defined as

5 (7
LDLJ = —log | — / I3 dt |,
Upeak /0

(AS5)



TABLE A.2
ABLATION RESULTS COMPARING ONE-SHOT GUIDANCE AND LEGATO
UNDER THE SAME GUIDANCE CONFIGURATION (d=8, s=30, r=22).
VALUES ARE REPORTED AS MEAN =+ STANDARD ERROR.

Metric | One-shot Guidance Legato
Completion Time | 88.44 £ 1.67 75.73 £ 151
NSPARC | 1.77 £ 017 1.65 + 0.08
NLDLJ | 40.69 + 0.21 39.50 + 0.3
Overlap RMSE | 12.69 + 1.55 5.14 £+ o017
where vpeax = max, |v(t)] is the peak velocity.
We report the negated quantity
NLDLJ £ —LDLJ, (A.6)

so that smaller NLDLJ values indicate smoother motion.

For multi-dimensional trajectories, jerk is computed by
successively differentiating position or rotation vectors to
obtain vector jerk, followed by taking the Euclidean norm.
NLDLJ is computed separately for translational and rotational
motion, and the final score is averaged across all end-effectors.
To avoid artificially inflated jerk values at chunk boundaries,
jerk samples corresponding to chunk connection points are
excluded from the computation.

NLDLJ measures smoothness in terms of higher-order tem-
poral continuity. Trajectories with abrupt acceleration changes
or sharp corrective motions yield larger NLDLJ values, while
trajectories with gradual acceleration profiles achieve smaller
NLDLJ values.

¢) Overlap RMSE: Overlap RMSE directly measures
consistency across consecutive action chunks. Let aglf}{ and
ag’fgl) denote two consecutive predicted action chunks of
length H, and let the last O steps of al®) overlap with the
first O steps of a**t1). The overlap RMSE is defined as

O
1 2
RMSEovertap = 4| 5 D Hagp_% - ag‘““)H2. (A7)
=1

Overlap RMSE explicitly measures inter-chunk consistency.
Lower overlap RMSE values indicate better alignment between
consecutive chunks and smoother continuation behavior at
chunk boundaries.

E. Preliminary Study Details

This appendix provides additional empirical evidence sup-
porting the conclusion in section. III-B that one-shot guidance
is insufficient for effective continuation and that guidance must
be applied before every denoising step.

Following the setup described in the main text, we compare
a one-shot guidance baseline with Legato on the pour task.
Both methods are evaluated under the same experimental
conditions as the main experiments. For the one-shot baseline,
guidance is applied only at initialization, after which standard
multi-step denoising is performed without any intermediate
guidance. Legato, in contrast, applies guidance before every
denoising step while remaining consistent with the training
objective.

TABLE A3
HYPERPARAMETER CONFIGURATION USED IN THE MAIN EXPERIMENTS
AND ABLATION STUDIES.

Symbol Description Value

H Action chunk size 60

f Action execution frequency 30Hz

N Number of denoising steps 5

d ~ Uni['] Training-time delay range Uni[0, 10]
r ~ Uni[] Training-time ramp range Uni[0, 50]

We use a guidance schedule with stride s = 30, delay
d = 8, and ramp length r = 22 for both methods. Quan-
titative results are reported in table A.2. The results show
that Legato significantly outperforms the one-shot baseline,
with particularly pronounced improvements in overlap RMSE.
This indicates that without repeated guidance, the overlap
region progressively deviates from the desired continuation,
even when the initial condition is properly constrained.

These results empirically confirm the observation in section.
II1-B that guidance applied only at initialization cannot reliably
preserve constraints throughout the denoising process. Re-
peated, per-step guidance is necessary to maintain consistent
continuation across action chunks.

F. Robot Hardware Configuration

All experiments in this paper are conducted on the same
dual-arm robotic platform. The robot is equipped with a left
arm and a right arm, where each arm consists of seven actuated
joints and a gripper, resulting in eight degrees of freedom per
arm.

The perception system includes one head-mounted RGB
camera providing a global view of the workspace, as well
as one wrist-mounted RGB camera on each arm. In total, the
robot uses three cameras for visual observation.

For VLA training and inference, actions are represented
in the end-effector space. Each arm’s action consists of a
6-dimensional end-effector pose, including 3D position and
3D rotation vector, together with a 1-dimensional gripper
command. As a result, the action vector for each arm has 7
dimensions, and the full action space for the dual-arm system
is 14-dimensional.

G. Hyperparameter Configuration

Table summarizes the hyperparameter configuration
used in the main experiments and ablation studies. Unless
otherwise specified, all experiments share the same config-
uration. We note that d and r denote the delay and ramp-
length parameters of the guidance schedule; they are fixed at
evaluation time, while during training we optionally randomize
them by uniform sampling within specified ranges.

H. Results Analysis

1) Analysis of the d=s=r=8 setting: We analyze an ab-
normal behavior observed under the d=s=r==8 configuration,
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Fig. A.1. Trajectory example for the pour task under the d=s=r==8

configuration. The top panels show a full pouring operation, and the bottom
panels show a zoomed-in view of the first 5 seconds. Red dashed lines indicate
chunk boundaries. RTC exhibits pronounced low-frequency, large-amplitude
oscillations, with direction changes occurring mostly within chunks, indicating
increased spurious multimodal switching. Despite achieving lower overlap
RMSE, RTC produces visibly less smooth trajectories in this regime.

where RTC exhibits counterintuitive trends on specific smooth-
ness metrics.

Under this setting, the model initiates the next inference
immediately after generating each action chunk. When the
delay d is fixed, setting s=r=d corresponds to the highest
possible inference frequency.

In this regime, the oscillatory behavior of RTC becomes
visually apparent, with motion fluctuations reaching ampli-
tudes that are clearly observable. To better understand this
phenomenon, we visualize the executed trajectories in fig. [A.T]
The plots reveal large-amplitude oscillations in RTC trajecto-
ries, whereas Legato produces substantially smoother motion.

The lower panels show a zoomed-in view of the first 5
seconds of execution. The vertical red dashed lines indicate
chunk boundaries. Notably, most direction changes occur
within individual chunks rather than at chunk boundaries. This
suggests that under frequent re-inference, RTC suffers from
more severe spurious multimodal switching inside each chunk,
rather than discontinuities caused purely by chunk transitions.

Under this setting, NSPARC more faithfully reflects the
perceived smoothness difference between RTC and Legato.
Since NSPARC captures the spectral distribution of motion
energy, it is particularly sensitive to low-frequency, large-
amplitude oscillations, which dominate RTC trajectories in
this regime. In contrast, Legato suppresses such oscillatory
behavior by maintaining stronger mode persistence across
denoising steps, as shown in fig. and fig. 6.

Interestingly, RTC achieves a lower overlap RMSE than
Legato in this configuration. This observation indicates that

overlap RMSE may fail to fully capture smoothness degrada-
tion when oscillations are dominated by low-frequency, large-
amplitude motion. Although the overlap between consecutive
chunks remains numerically consistent, the resulting trajectory
still exhibits pronounced oscillations that negatively impact
execution quality. This case highlights a limitation of overlap
RMSE as a standalone smoothness indicator under high-
frequency inference settings.

2) Analysis of the condition row: We further analyze
the effect of introducing the condition row in the guidance
schedule. As shown in table IV, adding the condition row does
not lead to a significant improvement in NSPARC, whereas it
consistently yields a substantial reduction in overlap RMSE
across different guidance configurations. This suggests that
the condition row primarily improves inter-chunk consistency
rather than intra-chunk smoothness.

When the delay d decreases and the ramp length r corre-
spondingly increases due to parameter constraints, the overlap
RMSE of models without the condition row also decreases.

Although adding the condition row provides clear benefits
under identical (d,s,r) configurations, we observe that a
model without the condition row under (d, s,r) = (6,30, 24)
achieves better overlap RMSE than a model with the condition
row under (d, s,r) = (10,30, 20). This observation suggests
that when the delay d is sufficiently small, acceptable contin-
uation behavior can be achieved even without the condition
row. In such regimes, omitting the condition row may serve
as a viable alternative with reduced conditioning overhead.
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